| □ DO | NOW – Geometry Regents Lomac 2014-2015 Date | <u>10/22</u> | due <u>10/23</u> | Composition of transformations 2.10 | | | |--|--|--------------|---|-------------------------------------|--|--| | (DN) Describe what each transformation function notation means: (a) T_{IM} (△HIJ) (b) R_{A,-45°} (CD) (c) r_{ZY} (U) | | | O: I can perform a sequence/composition of transformations on a given figure using a straightedge and compass, explain how the sequence results in the final image, and use function notation for the transformation. | | | | | [] (1) | Notes: Constructing Parallel Lines Construct line <i>p</i> parallel to line <i>n</i> . (a) Obtain "1 Construction Notes Page 3 & 4", a descriptions page, scissors, and tape or glue (b) Cut, arrange, check, and then glue or tape down the descriptions | | | | | | | transparen
cies, dry
erase
markers,
erasers | dry A sequence or composition of transformations is when a figure undergoes multiple transformations. Describe each composition of transformations below using the terms reflection, rotation, and translation. Include direction | | | | | | | | (a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | (c) | | (d) \(\bigcup_{\ell} \) | | | | | |

 | | | | | | <u>(3)</u> | Reading and writing function notation for transfor (a) \square The function notation $r_m(T_{\overline{AB}}(Q))$ is read: "The reflection across line m of the translation Which do you think happens first, the reflection, | n along ve | ector AB of point Q." | - | | | | | (b) Read the statement: "Anthony took a picture of the drawing of his family." Which do you think happens first, the picture or the drawing? because | | | | | | | | (c) Read the sentence from part (a) again. "The reflection across line m of the translation along vector AB of point Q." Which happens first, the reflection, or the translation? Did your answer change? Why/why not? | | | | | | | | 1 | Peading | g and writing | function | notation | for trans | formations | |----|---|------------|---------------|----------|----------|-----------|---------------| | Ш١ | 4 |) Reauiiių | j anu wnung | Tunction | HOLALIOH | ioi trans | ioiiiialioiis | Compositions of transformations can be written $$T_{\overline{HA}} \circ R_{C,45^{\bullet}} (\ \overline{YZ}\)$$ OR $$T_{\overline{HA}} (R_{C,45^{\circ}} (\ \overline{YZ}\) \quad \text{ which is read:}$$ "the transformation along vector HA of the rotation 45° around point C of segment YZ" | Based on your work in problem #5, Which happens first, the translation or the rotation? | | |---|--| | because | | | | | ## (5) Writing function notation for transformations transparen cies, dry erase markers, erasers Use the abbreviation examples from problem #3 and the order of compositions from #5 & #6 to describe each composition of transformations and then write the abbreviation for it. Abbreviation: _____ Description: _____ | (6) | |------------| | transparen | | cies, dry | | erase | markers, erasers ### **Describing compositions of functions** \square Describe with as much detail as possible the composition of transformations that map \triangle PQR to \triangle XYZ. You may want to add letters to the in-between steps to make your explanation easier. # (7) Constructing compositions of transformations Construct each composition of transformations. $$\square$$ (a) $T_{\overrightarrow{AB}} \circ r_{\ell} \left(\overrightarrow{XY} \right)$ | | (7 | |------|----| | cont | | ## Constructing compositions of transformations | (8) | Exit Ticke | |------------|-------------------| |------------|-------------------| Describe the composition of transformations and write the transformation in function notation. | | ۱(۶ | " | |-----|-----|----| | com | nas | 22 | #### Homework (1) Describe each transformation. Circle the part of the transformation that happens first. | $r_{\overrightarrow{CD}} \circ r_{\overrightarrow{MT}}$ | (ΔXNJ) | |---|----------------| |---|----------------| | $T_{\overline{WB}} \circ R_{J,-42} \left(\overline{LU} \right)$ | | | |--|--|--| | | | | | $R_{C,25^{\circ}} \circ r_{\tilde{i}}(F)$ | |---| | | |
 |
 |
 | | |------|------|------|--| | | | | | | | | | | (9) compass Homework (2) Construct a copy of angle S. (3) Bisect angle S' in problem number 2. Construct $R_{R,180^{\circ}} \circ T_{\overrightarrow{AB}} (\Delta HJL)$